Главная страница «Первого сентября»Главная страница журнала «Химия»Содержание №4/2010
ЛЕКЦИИ ДЛЯ УЧИТЕЛЕЙ

 

Углеводороды

10 класс

Продолжение. Начало см. в № 9, 17/2009.

Л е к ц и я 6.

Циклопарафины, их строение, свойства, нахождение в природе, практическое значение

Помимо предельных углеводородов с открытой цепью существуют предельные углеводороды с замкнутой (циклической) цепью. Они имеют несколько названий: циклоалканы, циклопарафины, нафтены, цикланы, полиметилены. Циклоалканы различаются между собой размерами цикла:

По размеру цикла циклоалканы делятся на группы: малые (C3, C4) и обычные (C5 – C7) циклы.

Молекулы циклоалканов содержат на два атома Н меньше, чем соответствующие алканы (за счет их отщепления замыкается углеродное кольцо). Поэтому общая формула циклоалканов СnH2n.

Трех- и четырехчленные циклоалканы менее прочны, чем пяти- и шестичленные. Циклобутан и особенно циклопропан – соединения малоустойчивые. Это связано с тем, что в молекулах этих соединений углы между валентными связями значительно отличаются от “нормального” угла в правильном тетраэдре (109°28'). Например, в циклопропане, молекулу которого можно изобразить в виде равностороннего треугольника, угол между углерод-углеродными связями (60°) отличается от тетраэдрического угла на 49°28' (а в расчете на одну связь на 24°44'). Такое отклонение от тетраэдрического угла создает в молекуле значительное напряжение, что существенно сказывается на ее устойчивости.

В циклогексане разница между тетраэдрическим углом и углом между углерод-углеродными связями в нем меньше и составляет 10°32' (в расчете на одну связь она равна 5°16'). Чтобы еще уменьшить эту разницу, молекула циклогексана, как и другие молекулы циклоалканов, изгибается в пространстве. Существуют две основные формы – “ванна” и “кресло”. Наиболее устойчивой (энергетически выгодной) формой в циклогексане является форма “кресло”.

Молекулы циклоалканов часто содержат боковые углеводородные цепи:

У циклопарафинов возможна изомерия.

Структурная изомерия обусловлена размером цикла (например, циклобутан и метилциклопропан – изомеры) и положением заместителей в цикле (например, 1,1- и 1,2-диметилциклобутан).

Также имеет место пространственная изомерия, связанная с различным расположением заместителей относительно плоскости цикла. При их расположении по одну сторону от плоскости цикла получается цисизомер, по разные стороны – трансизомер:

Кроме того, каждому циклоалкану изомерен соответствующий алкен – это пример межклассовой изомерии.

Физические свойства. Циклопропан и циклобутан при нормальных условиях – газы, с С5 до С16 – жидкости, начиная с С17 и выше – твердые вещества. Температура кипения и плавления циклоалканов несколько выше, чем у алканов с тем же числом атомов С в молекуле. Циклопарафины в воде практически не растворяются.

Химические свойства. Циклоалканы химически малоактивны и в этом отношении напоминают алканы: они горючи, атомы Н могут замещаться галогенами.

Химические свойства циклоалканов определяются особенностями их строения.

1. Малые циклы (особенно циклопропан) неустойчивы и способны к разрыву, поэтому они склонны к реакциям присоединения:

2. Обычные циклы (С5–С7) очень устойчивы и вступают только в реакции замещения, подобно алканам:

3. Циклопарафины подвергаются реакциям дегидрирования (отщепления Н):

Нахождение в природе. Циклопарафины главным образом находятся в составе некоторых нефтей. Отсюда и другое название циклопарафинов – нафтены. Пяти- и шестичленные циклопарафины были впервые выделены из нефти и изучены профессором Московского университета В.В.Марковниковым.

Практическое значение. Циклоалканы и их гомологи относятся к карбоциклическим соединениям.

Как вещества, составляющие значительную часть некоторых сортов нефти и получаемых из нее нефтепродуктов, они имеют большое практическое значение.

Циклопропан C3H6 используют в качестве анестезирующего средства в хирургии (для наркоза). Циклогексан С6Н12 – прекрасный растворитель. Циклоалканы являются компонентами моторного топлива.

Циклогексан, метилциклогексан и некоторые другие в процессе ароматизации нефти превращаются в ароматические углеводороды – бензол, толуол и другие вещества, которые широко используются для синтеза красителей, медикаментов и т.д.

Л е к ц и я 7.

Ароматические углеводороды. Бензол, структурная формула, свойства и получение. Применение бензола и его гомологов

Ароматические углеводороды, или арены, – это соединения углерода с водородом, в молекулах которых содержится бензольное кольцо, или ядро, – циклическая группа атомов углерода с особым характером связей.

Простейшим представителем аренов является бензол C6H6. Гомологический ряд бензола имеет общую формулу CnH2n-6.

Первую структурную формулу бензола предложил в 1865 г. немецкий химик Ф.А.Кекуле:

Атомы С в молекуле бензола образуют правильный плоский шестиугольник, хотя часто его рисуют вытянутым.

Приведенная формула правильно отражает равноценность шести атомов С, однако не объясняет ряд особых свойств бензола. Например, несмотря на ненасыщенность, он не проявляет склонности к реакциям присоединения: не обесцвечивает бромную воду и раствор перманганата калия, т.е. ему не свойственны типичные для непредельных соединений качественные реакции.

В структурной формуле Кекуле – три одинарные и три двойные чередующиеся углерод-углеродные связи. Но такое изображение не передает истинного строения молекулы. В действительности углерод-углеродные связи в бензоле равноценны. Это объясняется электронным строением его молекулы.

Каждый атом С в молекуле бензола находится в состоянии sp2-гибридизации. Он связан с двумя соседними атомами С и атомом Н тремя -связями. В результате образуется плоский шестиугольник, где все шесть атомов С и все -связи С–С и С–Н лежат в одной плоскости (угол между связями С–С равен 120o). Третья p-орбиталь атома углерода не участвует в гибридизации. Она имеет форму гантели и ориентирована перпендикулярно плоскости бензольного кольца. Такие p-орбитали соседних атомов С перекрываются над и под плоскостью кольца. В результате шесть p-электронов (всех шести атомов С) образуют общее -электронное облако и единую химическую связь для всех атомов С.

-Электронное облако обусловливает сокращение расстояния между атомами С. В молекуле бензола они одинаковы и равны 0,140 нм. В случае простой и двойной связи эти расстояния составили бы соответственно 0,154 и 0,134 нм. Значит, в молекуле бензола нет чередования простых и двойных связей, а существует особая связь – “полуторная” – промежуточная между простой и двойной, так называемая ароматическая связь. Чтобы показать равномерное распределение p-электронного облака в молекуле бензола, корректнее изображать ее в виде правильного шестиугольника с окружностью внутри (окружность символизирует равноценность связей между атомами С) (I). Однако часто пользуются и формулой Кекуле с указанием двойных связей (II), помня, однако, о ее недостатках:

Физические свойства. Бензол – бесцветная, летучая, огнеопасная жидкость со своеобразным запахом. В воде практически нерастворим, но служит хорошим растворителем для многих органических веществ. Горит сильно коптящим пламенем (92,3 % массы приходится на углерод). Пары' бензола с воздухом образуют взрывчатую смесь. Жидкий бензол и пары' бензола ядовиты. Температура кипения бензола 80,1 °С. При охлаждении он легко застывает в белую кристаллическую массу с температурой плавления 5,5 °С.

Химические свойства. Ядро бензола обладает большой прочностью. Этим и объясняется склонность аренов к реакциям замещения. Они протекают легче, чем у предельных углеводородов.

• Реакция замещения (ионный механизм).

1) Галогенирование. Бензол взаимодействует с бромом и хлором только в присутствии катализаторов:

2) Нитрование. При действии на бензол нитрующей смеси (смесь концентрированных азотной и серной кислот) атом водорода замещается нитрогруппой NO2:

• Реакции присоединения к бензолу приводят к разрушению ароматической системы и требуют больших затрат энергии, поэтому протекают только в жестких условиях.

Бензол не присоединяет галогеноводороды и воду.

1) Гидрирование. Бензол присоединяет водород при низкой температуре в присутствии катализатора – никеля или платины, образуя циклогексан:

2) Галогенирование. Бензол при ультрафиолетовом облучении присоединяет хлор, образуя гексахлорциклогексан (гексахлоран):

• Реакции окисления.

1) Бензол очень устойчив к окислителям. В отличие от непредельных углеводородов он не обесцвечивает бромную воду и раствор KMnO4.

2) Бензол на воздухе горит коптящим пламенем:

2C6H6 + 15O2 12CO2 + 6H2O.

Арены, таким образом, могут вступать как в реакции замещения, так и в реакции присоединения, однако условия этих превращений значительно отличаются от аналогичных превращений предельных и непредельных углеводородов. Эти реакции бензола внешне схожи с реакциями алканов и алкенов, но протекают по другим механизмам.

Получение бензола.

1) Бензол получают из нефти и каменноугольной смолы, образующейся при коксовании каменного угля.

2) Советский академик Николай Дмитриевич Зелинский установил, что бензол образуется из циклогексана (дегидрирование циклоалканов):

3) При тех же условиях н-гексан превращается в бензол (реакция дегидроциклизации):

4) Бензол можно получить тримеризацией ацетилена (метод Н.Д.Зелинского и Б.А.Казанского):

5) Бензол получают при сплавлении солей ароматических кислот со щелочью:

C6H5–COONa + NaOH —> C6H6 + Na2CO3.

Применение бензола и его гомологов.

Бензол C6H6 – хороший растворитель. Бензол в качестве добавки улучшает качество моторного топлива. Служит сырьем для получения многих ароматических органических соединений – нитробензола C6H5NO2 (растворитель, из него получают анилин), хлорбензола C6H5Cl, фенола C6H5OH, стирола и т.д.

Толуол C6H5–CH– растворитель, используется при производстве красителей, лекарственных и взрывчатых веществ (тротил (тол), или 2,4,6-тринитротолуол ТНТ).

Ксилолы C6H4(CH3)2. Технический ксилол – смесь трех изомеров (орто-, мета- и пара-ксилолов) – применяется в качестве растворителя и исходного продукта для синтеза многих органических соединений.

Изопропилбензол C6H5–CH(CH3)2 служит для получения фенола и ацетона.

Хлорпроизводные бензола используют для защиты растений. Так, продукт замещения в бензоле атомов Н атомами хлора – гексахлорбензол С6Сl6 – фунгицид; его применяют для сухого протравливания семян пшеницы и ржи против твердой головни. Продукт присоединения хлора к бензолу – гексахлорциклогексан (гексахлоран) С6Н6Сl– инсектицид; его используют для борьбы с вредными насекомыми. Упомянутые вещества относятся к пестицидам – химическим средствам борьбы с микроорганизмами, растениями и животными.

Стирол C6H5 – CH = CH2 очень легко полимеризуется, образуя полистирол, а сополимеризуясь с бутадиеном – бутадиенстирольные каучуки.

Л е к ц и я  8.

Природные источники углеводородов: газ, нефть, кокс.
Использование их в качестве топлива и в химическом синтезе

Наиболее важными источниками углеводородов являются природный и попутные нефтяные газы, нефть, каменный уголь.

По запасам природного газа первое место в мире принадлежит нашей стране. В природном газе содержатся углеводороды с низкой молекулярной массой. Он имеет следующий примерный состав (по объему): 80–98 % метана, 2–3 % его ближайших гомологов – этана, пропана, бутана и небольшое количество примесей – сероводорода Н2S, азота N2, благородных газов, оксида углерода(IV) CO2 и паров воды H2O. Состав газа специфичен для каждого месторождения. Существует следующая закономерность: чем выше относительная молекулярная масса углеводорода, тем меньше его содержится в природном газе.

Природный газ широко используется как дешевое топливо с высокой теплотворной способностью (при сжигании 1м3 выделяется до 54 400 кДж). Это один из лучших видов топлива для бытовых и промышленных нужд. Кроме того, природный газ служит ценным сырьем для химической промышленности: получения ацетилена, этилена, водорода, сажи, различных пластмасс, уксусной кислоты, красителей, медикаментов и других продуктов.

Попутные нефтяные газы находятся в залежах вместе с нефтью: они растворены в ней и находятся над нефтью, образуя газовую “шапку”. При извлечении нефти на поверхность газы вследствие резкого падения давления отделяются от нее. Раньше попутные газы не находили применения и при добыче нефти сжигались факельным способом. В настоящее время их улавливают и используют как топливо и ценное химическое сырье. В попутных газах содержится меньше метана, чем в природном газе, но больше этана, пропана, бутана и высших углеводородов. Кроме того, в них присутствуют в основном те же примеси, что и в природном газе: H2S, N2, благородные газы, пары Н2О, CO2. Из попутных газов извлекают индивидуальные углеводороды (этан, пропан, бутан и т.д.), их переработка позволяет получать путем дегидрирования непредельные углеводороды – пропилен, бутилен, бутадиен, из которых затем синтезируют каучуки и пластмассы. Смесь пропана и бутана (сжиженный газ) применяют как бытовое топливо. Газовый бензин (смесь пентана с гексаном) применяют как добавку к бензину для лучшего воспламенения горючего при запуске двигателя. Окислением углеводородов получают органические кислоты, спирты и другие продукты.

Нефть – маслянистая горючая жидкость темно-бурого или почти черного цвета с характерным запахом. Она легче воды ( = 0,73–0,97 г/ см3), в воде практически нерастворима. По составу нефть – сложная смесь углеводородов различной молекулярной массы, поэтому у нее нет определенной температуры кипения.

Нефть состоит главным образом из жидких углеводородов (в них растворены твердые и газообразные углеводороды). Обычно это алканы (преимущественно нормального строения), циклоалканы и арены, соотношение которых в нефтях различных месторождений колеблется в широких пределах. Уральская нефть содержит больше аренов. Кроме углеводородов, нефть содержит кислородные, сернистые и азотистые органические соединения.

Сырая нефть обычно не применяется. Для получения из нефти технически ценных продуктов ее подвергают переработке.

Первичная переработка нефти заключается в ее перегонке. Перегонку производят на нефтеперерабатывающих заводах после отделения попутных газов. При перегонке нефти получают светлые нефтепродукты:

бензин (tкип = 40–200 °С) содержит углеводороды С5–С11,

лигроин (tкип = 150–250 °С) содержит углеводороды С8–С14,

керосин (tкип = 180–300 °С) содержит углеводороды С12–С18,

газойль (tкип > 275 °С),

а в остатке – вязкую черную жидкость – мазут.

Мазут подвергают дальнейшей переработке. Его перегоняют под уменьшенным давлением (чтобы предупредить разложение) и выделяют смазочные масла: веретенное, машинное, цилиндровое и др. Из мазута некоторых сортов нефти выделяют вазелин и парафин. Остаток мазута после отгонки – гудрон – после частичного окисления применяется для получения асфальта. Главный недостаток перегонки нефти – малый выход бензина (не более 20 %).

Продукты перегонки нефти имеют различное применение.

Бензин в больших количествах используется как авиационное и автомобильное топливо. Он состоит обычно из углеводородов, содержащих в молекулах в среднем от 5 до 9 атомов С. Лигроин применяется как горючее для тракторов, а также как растворитель в лакокрасочной отрасли промышленности. Большие количества его перерабатывают в бензин. Керосин применяется как горючее для тракторов, реактивных самолетов и ракет, а также для бытовых нужд. Соляровое масло – газойль – используется как моторное топливо, а смазочные масла – для смазки механизмов. Вазелин используется в медицине. Он состоит из смеси жидких и твердых углеводородов. Парафин применяется для получения высших карбоновых кислот, для пропитки древесины в производстве спичек и карандашей, для изготовления свечей, гуталина и т.д. Он состоит из смеси твердых углеводородов. Мазут помимо переработки на смазочные масла и бензин используется в качестве котельного жидкого топлива.

При вторичных методах переработки нефти происходит изменение структуры углеводородов, входящих в ее состав. Среди этих методов большое значение имеет крекинг углеводородов нефти, проводимый с целью повышения выхода бензина (до 65–70 %).

Крекинг – процесс расщепления углеводородов, содержащихся в нефти, в результате которого образуются углеводороды с меньшим числом атомов С в молекуле. Различают два основных вида крекинга: термический и каталитический.

Термический крекинг проводится при нагревании исходного сырья (мазута и др.) при температуре 470–550 °С и давлении 2–6 МПа. При этом молекулы углеводородов с большим числом атомов С расщепляются на молекулы с меньшим числом атомов как предельных, так и непредельных углеводородов. Например:

(радикальный механизм),

Таким способом получают главным образом автомобильный бензин. Выход его из нефти достигает 70 %. Термический крекинг открыт русским инженером В.Г.Шуховым в 1891 г.

Каталитический крекинг проводится в присутствии катализаторов (обычно алюмосиликатов) при 450–500 °С и атмосферном давлении. Этим способом получают авиационный бензин с выходом до 80 %. Такому виду крекинга подвергается преимущественно керосиновая и газойлевая фракции нефти. При каталитическом крекинге наряду с реакциями расщепления протекают реакции изомеризации. В результате последних образуются предельные углеводороды с разветвленным углеродным скелетом молекул, что улучшает качество бензина:

Бензин каталитического крекинга обладает более высоким качеством. Процесс его получения протекает значительно быстрее, с меньшим расходом тепловой энергии. К тому же при каталитическом крекинге образуется относительно много углеводородов с разветвленной цепью (изосоединений), представляющих большую ценность для органического синтеза.

При t = 700 °С и выше происходит пиролиз.

Пиролиз – разложение органических веществ без доступа воздуха при высокой температуре. При пиролизе нефти основными продуктами реакции являются непредельные газообразные углеводороды (этилен, ацетилен) и ароматические – бензол, толуол и др. Поскольку пиролиз нефти – один из важнейших путей получения ароматических углеводородов, то этот процесс часто называют ароматизацией нефти.

Ароматизация – превращение алканов и циклоалканов в арены. При нагревании тяжелых фракций нефтепродуктов в присутствии катализатора (Pt или Mo) углеводороды, содержащие 6–8 атомов С в молекуле, превращаются в ароматические углеводороды. Эти процессы протекают при риформинге (облагораживание бензинов).

Риформинг – это ароматизация бензинов, осуществляемая в результате нагревания их в присутствии катализатора, например Pt. В этих условиях алканы и циклоалканы превращаются в ароматические углеводороды, вследствие чего октановое число бензинов также существенно повышается. Ароматизацию применяют для получения индивидуальных ароматических углеводородов (бензола, толуола) из бензиновых фракций нефти.

В последние годы углеводороды нефти широко используются как источник химического сырья. Различными способами из них получают вещества, необходимые для производства пластмасс, синтетического текстильного волокна, синтетического каучука, спиртов, кислот, синтетических моющих средств, взрывчатых веществ, ядохимикатов, синтетических жиров и т.д.

Каменный уголь так же, как природный газ и нефть, является источником энергии и ценным химическим сырьем.

Основной метод переработки каменного угля – коксование (сухая перегонка). При коксовании (нагревании до 1000 °С – 1200 °С без доступа воздуха) получаются различные продукты: кокс, каменноугольная смола, надсмольная вода и коксовый газ (схема).

Схема

• Кокс используют в качестве восстановителя при производстве чугуна на металлургических заводах.

• Каменноугольная смола служит источником ароматических углеводородов. Ее подвергают ректификационной перегонке и получают бензол, толуол, ксилол, нафталин, а также фенолы, азотсодержащие соединения и др. Пек – густая черная масса, оставшаяся после перегонки смолы, используется для приготовления электродов и кровельного толя.

• Из надсмольной воды получают аммиак, сульфат аммония, фенол и др.

• Коксовый газ применяют для обогревания коксовых печей (при сгорании 1м3 выделяется около 18000 кДж), но в основном его подвергают химической переработке. Так, из него выделяют водород для синтеза аммиака, используемого затем для получения азотных удобрений, а также метан, бензол, толуол, сульфат аммония, этилен.

Л и т е р а т у р а

Цветков Л.А. Органическая химия. 10–11 класс. М.: Владос, 2000; Хомченко Г.П. Пособие по химии для поступающих в вузы. М.: Новая волна, 1997; Кузьменко Н.Е., Еремин В.В., Попков В.А. Начала химии: Современный курс для поступающих в вузы. М.: Экзамен, 2003.

Л.И.ПОПОВА,
учитель химии
(г. Новоуральск, Свердловская обл.)