Главная страница «Первого сентября»Главная страница журнала «Химия»Содержание №10/2007

О ЧЕМ НЕ ПИШУТ В УЧЕБНИКАХ

Фотография:
фотохимические процессы

Для регистрации оптических изображений используют фотохимические или фотоэлектрические системы. Главное различие фотохимического и фотоэлектрического процессов – в способе хранения информации. В фотохимическом процессе энергия поглощенных фотонов приводит к химическим изменениям вещества, которые позволяют хранить (по крайней мере, временно) информацию об изображении.

Потемнение некоторых соединений, в том числе солей серебра, под действием солнечного света было известно еще со времен алхимиков. Такое явление отмечали и специально исследовали многие естествоиспытатели, в том числе немецкий химик и врач Иоганн Глаубер (1604–1670), шведский химик Карл Вильгельм Шееле (1742–1786), французский химик Клод Луи Бертолле (1748–1822).

К.В.Шееле К.Л.Бертолле
К.В.Шееле
К.Л.Бертолле

В 1727 г. немецкий физик Иоганн Шульце обнаружил, что паста из мела и нитрата серебра чернеет на солнечном свете, и получил черные изображения, используя трафарет. В конце XVIII в. в Англии Томас Уэджвуд и Гемфри Дэви (1778–1829) использовали линзу для создания изображения на стекле, бумаге и коже, обработанных нитратом серебра, и получали картины, которые, к сожалению, быстро исчезали. Результаты этих экспериментов были опубликованы в 1802 г.

Г.Дэви
Г.Дэви

Первые неисчезающие изображения были получены в 1826 г. французским землевладельцем и изобретателем Жозефом Нисефором Ньепсом (1765–1833), который использовал сплав олова и свинца, покрытый раствором природного битума в лавандовом масле. Битум затвердевал при выдержке на свету в течение нескольких часов, а неэкспонированные участки можно было затем растворить в очищенном скипидаре. В результате возникало рельефное изображение, которое использовалось как клише для получения копий с оригинала.

Ж.Н.Ньепс
Ж.Н.Ньепс

В 1829 г. Ньепс обратился к солям серебра. Позднее вместе с художником-декоратором и портретистом Луи Жаком Манде Дагером (1787–1851) он разработал метод получения изображений, названный дагеротипией. На фотографические пластины наносили слой серебра, а затем тщательно очищенную поверхность обрабатывали парами йода. Под действием света йодид серебра разлагался с образованием микроскопических частиц металлического серебра, не видимых глазом. Далее пластинку проявляли в парах ртути. Частицы серебра взаимодействуют с ртутью с образованием амальгамы серебра, что можно наблюдать визуально. Амальгама серебра создает участки с матовой поверхностью, оптические свойства которой отличаются от зеркальной поверхности серебра. Оставшийся йодид серебра удаляли обработкой хлоридом натрия (позднее стали использовать тиосульфат натрия). Для получения первых дагеротипов требовалось 15–30 мин экспозиции. К 1837 г., после смерти Ньепса, Дагер настолько усовершенствовал его методику, что мог получать изображения значительно большей яркости.

Л.Ж.Дагер
Л.Ж.Дагер

Сообщение об открытии этого процесса было встречено с большим энтузиазмом. Однако оно было омрачено критическими замечаниями по поводу того, что каждая картина была уникальной и не могла быть повторена. Тем не менее, несмотря на несовершенство процесса, число фотографов неуклонно росло. Хотя этот метод и использовался для пейзажных, архитектурных и рекламных съемок, основным применением дагеротипии стал портретный жанр. До развития дагеротипии изображения человека можно было получать только с помощью живописи, требовавшей больших затрат времени и денег. Дагеротипия стала недорогим способом портретной съемки и приобрела широкую популярность.

Датой рождения фотографии считается 7 января 1839 г., когда о ней был сделан доклад во Французской академии наук английским ученым-любителем Уильямом Генри Фоксом Тальботом (1800–1877). После завершения артистической карьеры он начал экспериментировать в фотографии и создал светочувствительную бумагу. Тальбот пропитывал листы бумаги хлоридом натрия, высушивал их, а затем обрабатывал нитратом серебра, что приводило к образованию хлорида серебра. Те участки, которые подвергались действию света и состояли из мельчайших частиц серебра, были темными. Неосвещенные участки оставались светлыми.

У.Г.Ф.Тальбот
У.Г.Ф.Тальбот

Хотя снимки Тальбота, несомненно, уступали по качеству картинам Дагера, нововведения этого процесса облегчали его дальнейшее совершенствование и прокладывали путь для той фотографии, которую мы знаем сейчас.

Английский астроном и физик Джон Фредерик Вильям Гершель (1792–1871), который еще в 1819 г. обнаружил, что тиосульфат натрия растворяет различные соли серебра, узнав о работах Дагера и Тальбота в январе 1839 г., стал фиксировать изображение тиосульфатом натрия. Именно Гершель первым придумал термины «фотография», «негатив» и «позитив».

Дж.Ф.В.Гершель
Дж.Ф.В.Гершель

Возможность воспроизведения была достигнута с помощью процесса «калотипии», запатентованного Тальботом в 1841 г. В усовершенствованном методе он использовал полупрозрачную бумагу, обработанную йодидом серебра, и «проявитель» – галловую кислоту. Он делал «негатив», с которого затем можно было получить любое число «позитивных» отпечатков. Более того, при этом было сделано важное открытие «скрытого изображения», которое надо было проявить позднее. Даже для очень грубых снимков Тальбота время экспозиции уменьшилось до нескольких минут, и получать портреты стало легче, хотя для позирующих это все еще было неудобно.

Калотипный снимок Табольта
Калотипный снимок Табольта

Через два года Тальбот впервые осуществил позитивную печать с увеличением.

«Мокрый коллоидный» процесс английского химика Фредерика Скота-Арчера (1831–1892), разработанный в 1851 г., уменьшил время экспозиции до ~10 с. Коллодий представляет собой вязкий раствор нитроцеллюлозы в смеси эфира и спирта. Пластинки Арчера изготовлялись путем растворения соответствующих йодидов и бромидов в вязком коллодии и нанесения этого раствора на стеклянную пластинку. Невысохшую пластинку сенсибилизировали погружением в нитрат серебра, экспонировали в фотокамере, проявляли, фиксировали, промывали и сушили. Такие мокрые фотопластинки оказались весьма чувствительными к свету и давали высокую четкость изображения. Существенным недостатком являлась необходимость осуществления всего процесса за время, пока покрытие не успевало полностью высохнуть, т.к., подсохнув, оно становилось практически непроницаемым для обрабатывающих растворов. Кроме того, фотограф должен был сам готовить пластинки и использовать их влажными.

Позднее были изобретены сухие коллоидные пластинки, однако они требовали приблизительно в три раза большего времени экспозиции, чем мокрые.

Пластинки с «сухим желатином», изобретенные в 1871 г. английским врачом Р.Л.Мэддоксом и усовершенствованные в 1878 г. Ч.Беннетом, сократили время экспозиции до всего лишь 0,1 с. Растворенный в воде желатин смешивался с бромидом калия, а затем с нитратом серебра. Полученная эмульсия наносилась на стеклянную пластинку и высушивалась. Теперь фотографы были избавлены от необходимости использовать штатив и собственноручно изготавливать фотопластинки.

В 1884 г. Джордж Истмен (1854–1932) получил патент на новую систему фотографирования, в которой использовалась роликовая пленка на бумажной подложке и кассета, которая заряжалась пленкой в темном помещении и прикреплялась к фотоаппарату. Этот человек основал американскую компанию «Кодак». В 1889 г. компания «Истмен кодак» наладила производство прозрачной гибкой пленки с подложкой из нитрата целлюлозы.

Дж.Истмен
Дж.Истмен

В 1873 г. немецкий исследователь Г.В.Фогель (1834–1898) открыл, что чувствительность фотоэмульсии можно увеличить, вводя в нее определенные красители. «Спектральная активация» в настоящее время может увеличить чувствительность не только по всей видимой области, но и в инфракрасной области.

Таким образом, знания в области химии позволили изобретателям шаг за шагом подойти к негативно-позитивному процессу с использованием фотопленок, основные принципы его сохранились до наших дней. Фотография является ярким примером технологии, которая успешно двигалась вперед с развитием представлений об ее общих принципах. Большинство основных процессов было охарактеризовано около полутора веков назад, однако ясного теоретического обоснования не существовало до публикации в 1938 г. классической работы Н.Ф.Мотта и Р.У.Герни в журнале Королевского общества (Англия). С тех пор было проведено большое количество фундаментальных исследований, касающихся фотопроцессов, в различных областях физики и химии твердого тела.

Наиболее важными этапами фотографического процесса являются:

а) подготовка светочувствительной поверхности;

б) экспозиция для получения «скрытого изображения»;

в) проявление изображения для получения «негатива»;

г) сохранение изображения, т.е. его «фиксирование»;

д) изготовление «позитивных» отпечатков с негатива.

Получение светочувствительной поверхности. В современных процессах светочувствительная поверхность – это эмульсия галогенида серебра в желатине, нанесенная на подходящую прозрачную пленку или подложку. Галогенид осторожно осаждают таким образом, чтобы получить мелкие однородные кристаллы (содержащие ~1012 атомов серебра и имеющие менее 1 мкм в диаметре), или «зерна», как их обычно называют. Выбор галогенида зависит от того, какая чувствительность требуется, однако обычно используется бромид серебра (в особо чувствительных пленках – йодид серебра). В эмульсии добавляют также хлорид серебра (особенно в эмульсии для бумаги) и определенные органические красители. Обычно галогенид серебра составляет около 12% всего объема эмульсии негативного материала и около 6% – в случае фотобумаги.

Экспозиция для получения «скрытого изображения». Когда при экспозиции на свету фотон энергии h попадает в зерно галогенида серебра, галогенид-ион возбуждается и отдает электрон в зону проводимости, через которую он быстро переходит на поверхность зерна, где может высвободить атом серебра:

Br + h Br + e,

Ag+ + e Ag.

Эти стадии, в принципе, обратимы, однако на практике – нет, поскольку серебро высвобождается в дислокации (дефекте) кристалла или в позиции, занятой примесью (например, сульфидом серебра). Это дает возможность электрону понизить энергию, так что он оказывается в «ловушке». Активаторы чувствительности повышают чувствительность во всей видимой области спектра, т.к. они поглощают свет с характеристической частотой и обеспечивают механизм переноса энергии к галогенид-иону, чтобы возбудить электрон.

Чем больше фотонов попадает в зерно, тем больше электронов мигрирует и разряжает атомы серебра в одной точке. Образование хотя бы нескольких атомов серебра в зерне (в особо чувствительных эмульсиях в среднем 4–6 атомов, однако обычно в 10 раз больше) создает «точку». Она слишком маленькая, чтобы быть видимой. Однако концентрация зерен, содержащих такие точки, меняется по пленке в соответствии с изменением интенсивности полученного света, что создает в результате «скрытое изображение». Параллельное образование атомов галогена приводит к формированию молекул галогена, которые поглощаются желатином.

Проявление изображения для получения «негатива». «Проявление», или усиление интенсивности скрытого изображения, осуществляется действием мягкого восстановителя, который селективно восстанавливает те зерна, в которых имеются точки серебра, и не затрагивает неэкспонированные зерна. В этом процессе необходимо тщательно контролировать температуру и концентрацию и остановить процесс до того, как начнется взаимодействие с неэкспонированными зернами. Обычно в качестве восстановителя используют гидрохинон 1,4-C6H4(OH)2. Продуктом его окисления является хинон.

Химическая реакция проявления может быть выражена уравнением:

2AgBr + 1,4-C6H4(OH)2 = 2Ag + 2HBr + 1,4-C6H4(O)2.

Для ускорения процесса в проявитель вводят щелочи, карбонаты или бораты (они повышают рН). Кроме того, в него добавляют сульфиты, которые предотвращают окисление проявителя кислородом воздуха и реагируют с продуктами окисления проявляющего вещества.

Процесс восстановления является примером каталитической твердофазной реакции. Ее механизм выяснен не до конца, однако полное восстановление металла в зерне (т.е. 1012 атомов серебра), начинающееся с отдельной точки (т.е. 10 или 100 атомов серебра), дает замечательное усиление скрытого изображения примерно в 1011 или 1010 раз, что позволяет существенно уменьшить время экспозиции. Это является причиной первенства галогенидов серебра по сравнению с другими фоточувствительными материалами, хотя интенсивный поиск новых фотохимических систем все еще продолжается.

Сохранение изображения, т.е. его «фиксирование». После проявления негатив надо «закрепить» путем растворения всей оставшейся соли серебра, чтобы предотвратить ее дальнейшее восстановление. Для этого требуется подходящий комплексообразующий реагент. Обычно используется тиосульфат натрия:

AgBr + 2Na2S2O3 = Na3[Ag(S2O3)2] + NaBr,

т.к. реакция идет практически до конца и оба продукта растворимы в воде.

Изготовление «позитивных» отпечатков с негатива. Позитивный отпечаток является обратным негативу. Он получается пропусканием света через негатив и повторением вышеперечисленных стадий с использованием бумаги вместо прозрачной пленки.

Еще в те времена, когда стала развиваться дагеротипия, фотографы стремились к получению цветного изображения. Сначала пытались просто совместить изображения, снятые через цветные светофильтры, затем мелкие светофильтры стали размещать прямо в слое эмульсии на фотоматериале. В 1861 г. шотландский физик Джеймс Максвелл (1831–1879), обнаружив, что чувствительность солей серебра неодинакова в разных участках спектра, предложил трехцветный процесс, в котором отдельные негативы экспонировались через красный, зеленый и голубой фильтры. Тем самым он заложил основы для дальнейшего развития цветной фотографии. В 1861 г. в лондонском Королевском институте он продемонстрировал цветное изображение красной ленты.

При субтрактивном способе цветовоспроизведения, предложенном в 1868 г. французским химиком Луи Дюко дю Ороном (1837–1920), цвет частичных изображений является дополнительным к цвету лучей при экспонировании.

В 1903 г. братья Луи Жан и Огюст Люмьер разработали автохромный процесс получения цветных изображений. Для его осуществления мелкие зерна крахмала окрашивались в красный, зеленый и синий цвета. Эти зерна равномерно распределялись по стеклянной пластинке и покрывались эмульсией. Изготовленная таким образом пластинка экспонировалась со стороны стекла и проявлялась с обращением для получения диапозитива. Через несколько лет – в 1907 г. – цветная фотография стала коммерчески доступной.

Современные цветные фотоматериалы состоят из трех или более цветочувствительных эмульсионных слоев. Каждый из слоев по отдельности предназначен для регистрации одного из основных цветов. Верхний слой регистрирует лучи синей части спектра, средний – зеленой, нижний – красной.

Используемые для регистрации цветного изображения галогениды серебра сами по себе не могут образовывать цвета. Цвет вводится в пленку или отпечаток посредством краскообразующих компонентов, которые активируются во время цветного проявления. В процессе проявления продукты окисления проявляющего вещества реагируют с краскообразующими компонентами с образованием окрашенных участков только в тех местах, где произошло проявление. Цвет красителя каждого слоя является дополнительным к соответствующему основному цвету, к которому чувствителен этот слой.

Для изготовления любых фотоматериалов требуются соли серебра. Еще в XIX в. предлагалось использовать в фотографии светочувствительность некоторых солей железа, смешанных с солями платины или палладия, однако после первой мировой войны от этого способа отказались, в основном вследствие высокой стоимости фотоматериалов. Учитывая возможность полного исчерпания запасов серебра и его растущую стоимость, многие исследователи пытались найти новые недорогие светочувствительные материалы. Однако более перспективным оказалось повторное использование серебра после извлечения его из отработанных фотоматериалов. Альтернативой химическим фотографическим процессам стала цифровая фотография, хотя в некоторых отношениях она пока уступает традиционному способу фотографирования.

Л и т е р а т у р а

Greenwood N.N., Earnshaw A. Chemistry of the Elements, Oxford: Butterworth, 1997; Митчел Э. Фотография. Москва: Мир, 1988.

Материал подготовила Е.В.САВИНКИНА

Рейтинг@Mail.ru