Анализ распределения физических сил
|
Рис. 1.
|
Второй прибор, сходный с газометром, – аппарат Киппа (рис. 2). В этом приборе можно получать водород из цинка и соляной кислоты (см. рис. 2), сероводород из сернистого железа, углекислый газ из мрамора. В позиции а прибор находится в рабочем состоянии, кран открыт. Крепкий раствор соляной кислоты устремляется в нижнюю часть прибора, заполняет его и смачивает металлический цинк, лежащий на медной сетке. Цинк растворяется в кислоте, реагирует с ней, образующийся водород устремляется в среднюю сферу прибора, вытесняет воздух, смешиваясь с ним. Поэтому выходящий газ надо проверить на чистоту. Распределение физических сил в приборе показано на рис. 2 при помощи стрелок.
Рис. 2.
|
Закрываем кран. Водород продолжает образовываться, его количество увеличивается. Поскольку выход газу перекрыт, внутри сферы увеличивается давление. Оно и выдавливает кислоту из средней сферы до тех пор, пока кислота перестанет покрывать поверхность цинка. Химическая реакция прекращается (смоченный кислотой цинк продолжает некоторое время реагировать с ней). Внутреннее давление в приборе, создаваемое водородом, и давление, создаваемое гидравлическим затвором, уравновешиваются.
Рассмотрим методы собирания газов. На рис. 3 показано, как собирать газ методом вытеснения воздуха. Если газ токсичный, эта операция проводится в вытяжном шкафу. Газы, которые тяжелее воздуха, – СО2, О2, HCl, SO2, поступая в банку или химический стакан, вытесняют воздух.
Рис. 3.
|
При изучении углекислого газа: его физических свойств и неспособности поддерживать горение органических веществ – демонстрируется занимательный опыт гашения горящей на воздухе парафиновой свечи (рис. 4). Углекислый газ, как более тяжелый, под действием силы тяжести опускается вниз. Он заполняет емкость и вытесняет воздух, который в ней содержится. Свеча в атмосфере углекислого газа гаснет.
Рис. 4.
|
Прибор, изображенный на рис. 5, учащиеся собирают на практической работе «Получение кислорода и изучение его свойств». Этот прибор иллюстрирует метод собирания газа путем вытеснения воздуха (физическое обоснование понятия «относительная плотность»).
Рис. 5.
|
Другой способ собирания газов связан с вытеснением воды из сосуда. Таким путем можно собирать газы, мало растворяющиеся в воде, в частности оксид азота(II) (рис. 6). Газ из реактора 1 поступает в газоотводную трубку 2, подведенную под перевернутый вверх дном цилиндр 3. Проходя через толщу воды, газ собирается в зоне дна цилиндра. Под давлением газа вода выталкивается из цилиндра.
Если газ плохо растворяется в воде, то этим газом мож
Рис. 6.
|
но насыщать воду, как показано на рис. 7. В таком приборе можно получать хлор (см. рис. 7) или сернистый газ, добавляя к кристаллам сульфита натрия концентрированную серную кислоту. Газ, получаемый в колбе Вюрца, поступает в газоотводную трубку, концом погруженную в воду. Частично газ растворяется в воде, частично заполняет пространство над водой, вытесняя воздух.
Рис. 7.
|
Если газ хорошо растворяется в воде, то
его нельзя собирать методом вытеснения воды. На
рис. 8 и 9 показано, как собирают хлороводород и
аммиак методом вытеснения воздуха. На тех же рис.
8 и 9
(cм. c. 22) изображено растворение газов при
погружении пробирок с HCl и NH3 отверстием в
воду.
Рис. 8.
|
Рис. 9.
|
Если насыщать хлороводородом из пробирки (с реагентами) с газоотводной трубкой, опущенной в воду (рис. 10), то первые порции газа мгновенно растворяются в воде. В 1 л воды растворяется около 500 л хлороводорода, следовательно, поступающий газ не создает избыточного давления. На рис. 10 отмечено последовательное изменение давления газа pвнутр в реакционной пробирке по отношению к атмосферному давлению pатм. Давление внутри прибора становится меньше внешнего давления, и вода стремительно заполняет газоотводную трубку и сам прибор. Кроме того, что эксперимент испорчен, еще и пробирка может треснуть.
Рис. 10.
|
При изучении химических свойств металлического натрия (рис. 11) важно не только наблюдать его поведение в реакции с водой, но и объяснять наблюдаемые явления. Первое наблюдение – натрий остается на поверхности воды, следовательно, его плотность меньше единицы (плотность воды). Второе наблюдение – натрий «мечется» по воде по причине отталкивающего действия выделяющегося газа. Третье наблюдение – натрий плавится и превращается в шарик. Реакция взаимодействия натрия с водой – экзотермическая. Выделяющейся теплоты достаточно, чтобы расплавить натрий, следовательно, он – легкоплавкий металл. Четвертое наблюдение – реакция сопровождается вспышками, следовательно, теплоты реакции достаточно и для самовозгорания натрия, и для микровзрыва водорода. Если реакцию проводить в узком пространстве (в пробирке), да еще и с крупным кусочком натрия, то взрыва водорода не избежать. Чтобы не было взрыва, реакцию проводят в кристаллизаторе или в большом по диаметру химическом стакане и с использованием маленького кусочка натрия.
Рис. 11.
|
Необходимо уделить большое внимание правилу растворения концентрированной серной кислоты в воде (рис. 12). Кислота, как более тяжелая жидкость, устремляется на дно круглодонной колбы. Все остальное показано на рис. 12.
Рис. 12.
|
Формированию физико-химического мышления способствует изучение кислорода (как в начальном курсе химии, так и в курсе органической химии). Речь идет об использовании кислорода и ацетилена при сварке и автогенной резке металла (рис. 13). При сварке высокотемпературное пламя горящего в кислороде ацетилена (до 2500 °С) направляется на металлический провод и свариваемое место. Металл плавится, получается шов. При автогенной резке пламя подплавляет металл, а избыток кислорода его выжигает.
Рис. 13.
|
Не в каждом кабинете химии имеется кремний как простое вещество. Проверим его на электропроводность при помощи простейшего прибора: щуп с упругими удлиненными железными концами, лампочка (смонтированная на подставке), и электропровод с вилкой (рис. 14). Лампочка светится, но не ярко – видно, что кремний проводит электрический ток, но оказывает ему значительное сопротивление.
Рис. 14.
|
Химический элемент кремний – аналог углерода, но радиус его атомов больше, чем радиус атомов углерода. Кремний, как простое вещество, имеет такую же (как алмаз) кристаллическую решетку (атомную) с тетраэдрической направленностью химических связей. В алмазе ковалентные связи прочные, он не проводит электрический ток. В кремнии, как показывает даже грубый эксперимент, какая-то часть электронных пар распаривается, что обусловливает некоторую электропроводность вещества. Кроме того, кремний разогревается (у некоторых учащихся есть возможность в этом убедиться), что тоже свидетельствует о сопротивлении вещества электрическому току.
С большим интересом учащиеся наблюдают за исследованием физических и химических свойств бензола (рис. 15). К небольшому количеству воды приливаем слой бензола толщиной ~2 мм (см. рис. 15, а). Видно, что две бесцветные жидкости не смешиваются. Интенсивным встряхиванием перемешиваем эту расслоенную смесь, получаем «седую» эмульсию. Фиксируем пробирку в вертикальном положении. Учащиеся наблюдают постепенное расслоение бензола и воды, причем сначала прозрачным становится нижний уровень содержимого, и через непродолжительное время получаем исходное распределение. Молекулы воды легче молекул бензола, но ее плотность несколько больше. Взаимодействие между неполярными молекулами бензола и полярными молекулами воды незначительное, очень слабое, поэтому большая часть бензола выталкивается на поверхность воды (см. рис. 15, б).
Рис. 15.
|
Теперь приливаем бензол к нескольким миллилитрам бромной воды (небольшой интенсивности окрашивания) (см. рис. 15, б). Жидкости не смешиваются. Интенсивно перемешиваем содержимое пробирки и даем возможность системе отстояться. Бром, прежде растворенный в воде, экстрагируется в слой бензола, что видно по изменению окраски и увеличению ее интенсивности.
К содержимому пробирки прильем несколько
миллилитров слабого раствора щелочи
(см. рис. 15, б). Бром вступает в реакцию со
щелочью. Слой бензола обесцвечивается, а
образовавшиеся неорганические вещества и вода
переходят в нижний (водный) слой.
В данной статье мы ограничились примерами, которые иллюстрируют не просто связь преподавания химии с физикой, а компенсируют недостаток учебников, в которых названные физические явления, как правило, не находят отражения.