Главная страница «Первого сентября»Главная страница журнала «Химия»Содержание №34/2004

УЧЕБНИКИ. ПОСОБИЯ

О.С.ЗАЙЦЕВ

УЧЕБНАЯ КНИГА ПО ХИМИИ

ДЛЯ УЧИТЕЛЕЙ СРЕДНИХ ШКОЛ,
СТУДЕНТОВ ПЕДАГОГИЧЕСКИХ ВУЗОВ И ШКОЛЬНИКОВ 9–10 КЛАССОВ,
РЕШИВШИХ ПОСВЯТИТЬ СЕБЯ ХИМИИ И ЕСТЕСТВОЗНАНИЮ

УЧЕБНИКЗАДАЧНИКЛАБОРАТОРНЫЙ ПРАКТИКУМНАУЧНЫЕ РАССКАЗЫ ДЛЯ ЧТЕНИЯ

Продолжение. См. № 4–14, 16–28, 30–34, 37–44, 47, 48/2002;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25-26, 27-28, 29, 30, 31, 32, 35, 36, 37, 39, 41, 42, 43, 44, 46, 47/2003;
1, 2, 3, 4, 5, 7, 11, 13, 14, 16, 17, 20, 22, 24, 29, 30, 31/2004

§ 8.2. Реакции на границе металл–раствор

Можно ли, опустив в морскую воду монету, соединенную с проволокой, получить после кораблекрушения электроэнергию для маленького транзисторного приемника? Почему железо ржавеет, а золото не ржавеет? Почему золото – очень дорогой металл, а железо сравнительно недорогой? Обо всем этом вы узнаете, прочитав этот раздел учебника.

Растворимость одного вещества в другом – свойство, присущее всем веществам. Растворимость может быть неограниченной и крайне малой, что зависит от термодинамических свойств растворяемого вещества и растворителя. Даже при чрезвычайно малой растворимости одного вещества в другом всегда осуществляется переход веществ через поверхность их контакта.
Любой металл растворяется в воде, однако растворимость металлов изменяется в очень широких пределах. Например, щелочные металлы бурно взаимодействуют с водой, при этом выделяется из воды водород и образуется раствор гидроксида.
Серебро практически не реагирует с водой, тем не менее процесс перехода частиц серебра в воду происходит, и получается лечебная «серебряная вода». Таким образом, одни металлы хорошо растворяются в воде, другие – крайне плохо. Ответ на вопрос, чем обусловлена различная растворимость металлов в воде, дает область химической науки – электрохимия.
Ниже мы поговорим об особой группе электрохимических реакций, протекающих на границе раздела фаз, в частности металл–вода (или раствор соли металла). Эти реакции характеризуются переносом заряда (электронов) и вещества через границу раздела фаз твердое вещество–жидкость.
Вы знаете, что металл проводит ток благодаря тому, что в его кристаллической решетке есть свободные (точнее, слабо связанные с атомами) электроны. А это означает, что в кристаллической решетке имеется некоторое количество положительно заряженных ионов металла.
Если металлическую пластинку, например медную, погрузить в воду или раствор соли меди, то из слоя металла, находящегося на границе с водой, положительно заряженные ионы Cu2+ начнут переходить в воду (рис. 8.5). Из-за этого пластинка приобретает отрицательный заряд. Между отрицательно заряженной пластинкой и перешедшими в раствор положительно заряженными ионами возникает электростатическое притяжение, что препятствует дальнейшему переходу ионов в раствор, т.е. процесс растворения металла прекращается.

Рис. 8.5. Образование двойного электрического слоя на границе металл–вода (раствор)

Рис. 8.5.
Образование двойного электрического слоя
на границе металл–вода (раствор)

Одновременно развивается противоположный процесс: ионы меди из раствора, подойдя к поверхности пластинки, принимают от нее электроны и, переходя в нейтральное состояние, осаждаются. Через некоторое время устанавливается состояние динамического равновесия, при котором скорость перехода ионов из металла в раствор равна скорости их осаждения на металле. На рис. 8.5 ион металла для простоты изображен негидратированным.
При контакте металла с водой или раствором соли металла жидкая и кристаллическая фазы приобретают на границе раздела противоположные заряды, в результате чего на межфазной границе образуется двойной электрический слой и возникает разность электрических потенциалов. Равновесие между металлом, жидкой фазой и двойным электрическим слоем полностью подчиняется всем положениям смещения химического равновесия. На рис. 8.5 двойной электрический слой изображен в виде двух плотных слоев электронов и катионов. В действительности каждый слой распространяется по обе стороны от места контакта металла с водой, и постепенно количество электронов и катионов в слоях понижается.
Равновесие между ионами раствора и металлом выражается уравнением

Cu2+ (р-р) + 2е = Сu (кр.).

В уравнении равновесия электрохимической реакции принимаемые электроны обычно записывают в левой части уравнения, перед знаком равенства. Соблюдение этого правила крайне важно, т.к. по таким уравнениям можно предсказывать направление электродных процессов.
Посмотрите на написанное уравнение – это уравнение окислительно-востановительной реакции! Поэтому все, что вы знаете об окислительно-восстановительных реакциях, следует использовать и для этих реакций.
Система, состоящая из проводника электрического тока и раствора (или расплава) электролита, в который погружен проводник, называется электродом. Так, медная пластинка, погруженная в водный раствор сульфата меди CuSО4, – типичный электрод.
Состояние равновесия электродного процесса определяется электродным потенциалом Е, представляющим собой разность потенциалов двух фаз на границе металл–электролит. Непосредственно измерить абсолютное значение электродного потенциала нельзя, но его можно сравнить с потенциалами других электродов (при стандартных условиях).
На медном электроде (медь–раствор с концентрацией ионов Cu2+, равной 1 моль/л) при разомкнутой гальванической цепи устанавливается равновесие, характеризующееся стандартным электродным потенциалом, равным 0,34 В:

Cu2+ + 2e = Cu, E = 0,34 В.

Положительное значение потенциала этой электродной реакции означает, что реакция может проходить самопроизвольно (при наличии второго электрода, поставляющего электроны), т.е. ионы меди могут переходить в металлическую медь (медь будет осаждаться на электроде).
Хотя, разумеется, знак заряда электрода не зависит от способа написания уравнения электродного процесса, при его записи в противоположном направлении знак потенциала необходимо изменить на противоположный.
Стандартный потенциал цинкового электрода равен –0,76 В:

Zn2+ + 2e = Zn, E = –0,76 B.

Отрицательное значение электродного потенциала цинка свидетельствует о невозможности прохождения реакции по этому уравнению. Самопроизвольно проходит процесс в противоположном направлении:

Zn – 2e = Zn2+, E = 0,76 B.

Уравнение этой реакции показывает, что цинк может «растворяться» в кислотах, или, более правильно, цинк реагирует с ионами водорода и образуются ионы цинка и газообразный водород.
Если расположить стандартные электродные потенциалы металлов в порядке уменьшения их отрицательного значения и повышения положительного, т.е. в порядке возрастания их электродных потенциалов, то получится ряд стандартных электродных потенциалов (в обычных учебниках химии называемый по-старому рядом напряжений металлов или неправильно – рядом активностей металлов):

Электродная реакция Е, В
Li+ + e = Li –3,03
K+ + e = K –2,93
Ca2+ + 2e = Ca –2,87
Na+ + e = Na –2,71
Mg2+ + 2e = Mg –2,37
Al3+ + 3e = Al –1,66
Zn2+ + 2e = Zn –0,76
Cr3+ + 3e = Cr –0,74
Fe2+ + 2e = Fe –0,44
2H+ (10–7M, вода) + 2e = H2 (г.) –0,41
Sn2+ + 2e = Sn –0,14
Pb2+ + 2e = Pb –0,13
2H+ (1М) + 2e = H2 (г.) 0,00
Cu2+ + 2e = Cu 0,34
Ag+ + e = Ag 0,80
Pt2+ + 2e = Pt 1,20
Au3+ + 3e = Au 1,50

Укажите в уравнениях реакций вещества, играющие роль окислителя и восстановителя. Найдите электродный потенциал, не относящийся к стандартным условиям.
Чем более отрицателен (менее положителен) электродный потенциал, тем выше способность металла посылать ионы в раствор и тем сильнее проявляет себя металл как восстановитель. Металлический литий – самый сильный восстановитель среди металлов, а металлическое золото в данном перечне уравнений реакций – самый слабый восстановитель. (Окислители или восстановители ионы Li+ и Au3+ и какой из них сильнее?)
Все металлы, расположенные в этом списке выше водорода, т.е. имеющие отрицательное значение электродного потенциала, растворяются в растворах кислот с концентрацией ионов водорода
1 моль/л. Если электродный потенциал металла имеет положительный знак, то металл не растворяется в растворах кислот с = 1 моль/л.
Эти правила можно не запоминать, лучше запомнить общий подход (уже вам известный) к определению направления окислительно-восстановительной реакции в гальваническом элементе.
Будет ли железо растворяться в соляной кислоте? Выпишем электродные потенциалы железа и водорода (в 1М растворе кислоты, т.е. при концентрации ионов водорода 1 моль/л):

Из этих двух реакций в написанном направлении будет протекать только та, у которой большая способность отдавать электроны, т.е. большее отрицательное значение электродного потенциала. Поэтому металлическое железо будет отдавать электроны, а ионы водорода их принимать:

Следовательно, железо будет растворяться в соляной кислоте.

Рейтинг@Mail.ru