УЧЕБНАЯ КНИГА ПО ХИМИИДЛЯ УЧИТЕЛЕЙ СРЕДНИХ ШКОЛ,
|
Нелокализованные электроны; металлическая связь; изоляторы; полупроводники. |
ЗАДАЧИ И ВОПРОСЫ
1. Как изменяется электропроводность металлов в группе магний – кальций – стронций – барий? Объясните причины.
2. Что экономически выгоднее использовать в качестве проводов для передачи электроэнергии – медь или алюминий? Объясните почему.
3. Переведите на русский язык.
The nature of the majority of chemicals can be described in terms of ionic or covalent bonds. The situation in metals requires, however, the postulation of a special type of metallic bond.
Metals have very distinctive properties and to account for them, particularly for the electrical conductivity, the idea of a special metallic bond is necessary. The general picture of the state of affairs in crystal of a metal is that atoms of the metal are packed in regular array within the crystal and that the atoms are surrounded by electrons which are relatively mobile. The cause of the mobility of the electrons is interpreted in terms of the band model of electronic energy levels in metallic crystals.
Electrical conductivity is associated, then, with either partially filled bands or with the overlapping of an unfilled band with a full one. It might be expected that increase in temperature would cause more electrons to be promoted into conducting bands with a consequent increase in conductivity or decrease in resistance. In general, however, the conductivity of a metal decreases with increase in temperature, i.e. the resistance increases. This is because increasing temperature produces increased thermal vibration within a metal crystal. This upsets the regularity within the crystal and interferes with the ease of movement of electrons through the crystal. It is rather like comparing movement through the ranks of battalion of soldiers on parade with that through a London crowd. Similarly, the introduction of an impurity may upset the regular array and so cause decreased conductivity or increased resistance. The resistance of copper, for example, is greatly increased by even traces of impurities.
* * *
В заключение сделаем краткий обзор типов
химической связи и закрепим пройденный материал.
Изучив химические связи, вы поняли, что в
веществе одновременно может осуществляться не
один тип связи, а несколько. Чаще всего вещество
характеризуют по тому типу связи, который
преобладает. Внимательно изучите приведенную
ниже обобщающую таблицу.
- Используя таблицу, расскажите о связях: С–Н в молекуле метана СН4, между атомами углерода в молекулах этана С2Н6, этилена С2Н4 и ацетилена С2Н2.
- Подробно и научно обсудите структуры молекул этана, этилена и ацетилена, тип связи между атомами углерода (одинарная, двойная, тройная, а также -связь, -связь).
Углы между связями Н–С–С в молекулах этана, этилена и ацетилена приблизительно равны:
Угол Н–С–Н в молекулах этана и этилена составляет соответственно ~109° и ~120°. Нарисуйте модели этих молекул.
Для закрепления материала переведите на русский язык.
The nature of chemical bond, the formation of molecules from atoms, and the structure of the molecules themselves are among the most important problems of chemistry, and have long attracted attention. However, as long as the complex structure of the atom remained unknown and the atom was considered to be indivisible, it was impossible to have a correct approach to these problems. In the course of the XIX century extremely valuable experimental material had been accumulated and important generalizations had been made, but their physical meaning became apparent only in our time. The concept of chemical equivalent was established and valence was introduced as a formal numerical characteristic of the ability of the atoms of one element to combine with a definite number of atoms of another element.
The study of electrolysis (in the first half of the XIX century) led to the hypothesis of electrical nature of valence forces and to the establishment of their difference in sign. It was natural to assign a negative charge and hence negative valence in the compound to the elements (oxygen or chlorine) which in electrolysis are discharged at the anode, and, on the contrary, a positive charge and positive valence to the elements (hydrogen, metals) which are discharged at the cathode. It was tried persistently to apply these ideas to all compounds. However, this approach was for the most part unsuccessful in the case of organic compounds.Таблица